時代TH200數(shù)顯A型邵氏硬度計 |
時代THBRV-187.5D/THBRVP-187.5E電動(數(shù)顯 |
時代THB-3000E/THBS-3000E/THBS-3000DB直讀 |
THBP-62.5數(shù)顯小負荷布氏硬度計 |
TMVP-1/TMVP-1S大屏數(shù)顯自動(手動)轉(zhuǎn) |
時代TMVM-1觸摸屏顯微維氏硬度計 |
最近,分形幾何法成為表面粗糙度測量法的熱門,國內(nèi)外在表征和研究機加工表面的微觀結(jié)構(gòu)、接觸機理和表面粗糙度等方面越來越多地使用分形幾何法這一有力的數(shù)學工具。研究表明,很多種機加工表面呈現(xiàn)出隨機性、多尺度性和自仿射性,即具有分形的基本特征,因而使用分形幾何法來研究表面形貌將是合理地、有效地。確定分形的重要參數(shù)有分形維數(shù)D和特征長度A,它們可以衡量機加工表面輪廓的不規(guī)則性,理論上不隨取樣長度變化和儀器分辨率變化,并能反映表面形貌本質(zhì)的特征,能夠提供傳統(tǒng)的表面粗糙度評定參數(shù)(如Ra、Ry、Rz等)所不能提供的信息。美國TopoMetrix公司生產(chǎn)的掃描探針顯微鏡(SPM)軟件體系中,已將分形維數(shù)作為評價表面微觀形貌的參數(shù)之一。
機械加工表面分形維數(shù)表達了表面所具有的復雜結(jié)構(gòu)的多少以及這些結(jié)構(gòu)的微細程度,微細結(jié)構(gòu)在整個表面中所占能量的相對大小。分形維數(shù)越大,表面中非規(guī)則的結(jié)構(gòu)就越多,并且結(jié)構(gòu)越精細,精細結(jié)構(gòu)所具有的能量相對越大,具有更強的填充空間的能力。
Mandelbrot于1982年在Weierstrass函數(shù)基礎上提出一種分形曲線的函數(shù)表達式,稱為Weierstrass-Mandelbrot函數(shù),結(jié)合工程表面的特性,往往將W-M函數(shù)寫成如下形式。
|
R>1 |
(1) |
Z(x)為機械加工表面輪廓。這樣,就在工程表面的函數(shù)描述中引入了分形維數(shù)D這一參數(shù),式中rn是表面上各次諧波的頻率。它的取值范圍取決于采樣長度L和采樣的最高分辨率,即截止頻率,A為特征長度。對W-M函數(shù)求功率譜可以得到
|
(2) |
輪廓的功率譜服從冪定律,在式(2)兩端取對數(shù)為
lgs(w)=B+klgw |
(3) |
B=2(D-1)lgA-lg(2lnr)
k=2D-5
在雙對數(shù)坐標lgs(w)-lgw中,k是斜率,w是截距,從上式可以看出分形維數(shù)D決定著圖線的斜率,特征長度A和分形維數(shù)D決定著圖線的位置(截距)。因此對于機械加工表面,可以通過其雙對數(shù)坐標下的功率譜圖,由(3)式算得分形維數(shù)D和特征長度A。
分形幾何法在實際應用中還有許多工作有待進一步研究。一是并非所有表面都具有分形特征,分形維數(shù)能否完全表征實際表面,還有待進一步研究;二是現(xiàn)有的分形數(shù)學模型并沒有考慮表面的功能特性,也沒有一種方法能唯一確定分形參數(shù)。
還想了解一些表面粗糙度標準知識嗎?請關注:http://m.kmpazp.cn/tech/cucaoduyi/810.html。閱讀本文的用戶還對以下文章感興趣:
類比法確定表面粗糙度時高度參數(shù)原則
表面粗糙度測量方法都有哪些
中國表面粗糙度與美國的對照